Fiboncci, conheça um pouco mais sobre essa poderosa ferramenta. Destaque

26 Dezembro 2019 by 51 comentários Educação 285 Views
Avalie este item
(0 votos)

 

Leonardo Bigollo, mais conhecido como Fibonacci, é o maior matemático da Europa medieval

 

Mais mágica de Fibonacci

Leonardo Bigollo (1170–1250), maior matemático da Europa medieval e conhecido por seus contemporâneos como Leonardo Pisano, era filho de comerciante na cidade italiana de Pisa —viu a famosa torre ser construída. Um livro de história da matemática publicado em 1838 referiu-se a ele como Leonardo Fibonacci (“filius Bonacci”, que significa “da família Bonacci”) e o nome pegou. Em suas viagens no Mediterrâneo, Leonardo adquiriu muito conhecimento da florescente civilização árabe, inclusive o sistema decimal de numeração, que os árabes tinham aprendido dos hindus. Em 1202, publicou sua maior obra, “Liber abaci” (livro do ábaco), em que defende vigorosamente o novo sistema. “Liber abaci” é uma das obras mais importantes da história da matemática, mas foi um pequeno detalhe (um exercício!) que contribuiu mais do que qualquer outra coisa para a fama de Fibonacci até os nossos dias.

“Um homem colocou um casal de coelhos em um recinto fechado. Quantos casais serão produzidos em um ano, se supusermos que cada casal gera outro por mês a partir de seu segundo mês de vida?”

 


O número de casais de coelhos segue a sequência F =1, F =1, F =2, F =3, F =5, F =8, F =13, F =21, F =34, F =55, F =89, F =144, F =233, F =377, F =610… em que cada número é igual à soma dos dois anteriores (F =F +F ): os casais que existem a cada momento são os que existiam no mês passado mais os filhos dos que já existiam no mês retrasado.

Para começar, a soma de três números de Fibonacci consecutivos é sempre um número par. Entende por quê? Um fato mais surpreendente é que a soma de 10 números consecutivos é sempre igual a 11 vezes o sétimo número somado. Por exemplo, F +F +F +F + F +F +F +F +F +F dá 1584, que é 11 vezes F . Por que, cara leitora? Outra propriedade curiosa: a soma dos produtos dos primeiros números de Fibonacci (por exemplo, 1x1+1x2+2x3+3x5+5x8+ 8x13+13x21) é o quadrado do último número usado (neste caso, 441, que é 21 ), desde que usemos uma quantidade ímpar de números (sete, neste caso). Consegue explicar, amigo leitor? Um fato surpreendente, descoberto por Lagrange em 1774, é que o último dígito de F se repete a cada 60 números. Por exemplo, F =13 termina com o dígito 3 e o mesmo acontece com F =44.945.570.212.853, F =155.576.970.220.531.065.681.649.693 etc. Por que será?

 

Fonte: 25.dez.2019 às 16h26 EDIÇÃO IMPRESSA (https://www1.folha.uol.com.br/fsp/fac-simile/2019/12/25/)

 

51 comentários

Deixe um comentário

Certifique-se de preencher os campos indicados com (*). Não é permitido código HTML.